Polymer electrolyte membranes used in fuel cells are proton selective and hence allows only protons to pass through it. The electrolyte composition, morphology and water absorption properties of the membrane greatly influence the performance of the fuel cell. For example the membranes used in fuel cells should meet following requirements. • Good thermal stability above 250°C. • Proton conductivity greater than 10^-2 S/cm. • Good water absorption and water retaining capacity. • mechanical strength and flexibility. The present paper is focused on design and development of a membrane suitable for fuel cell application. The base polymer chosen in this present work has been thermoplastic polyurethane because of its high flexibility, temperature resistance and solubility in organic solvent such as DMF. Fabrication of the coating machine was done and thermoplastic polyurethane (TPU) based Composite membranes with an average thickness of 40 microns were cast. Sulphonation of polystyrene was carried out to get SPS with assay 98%. TPU based composite membranes with conducting resins of 25% SPEEK, 4%SPS and 10% PANI were cast and characterized by FTIR, DSC, four probe conductivity and SEM. The composite membranes were studied for fuel cell suitability. The studies show that a current in the range of 0.5×10−4 A to 0.8344×10−4 A and about 0.5V can be drawn out of these membranes. The results were compared with that of NAFION membrane.
Skip Nav Destination
ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
June 14–16, 2010
Brooklyn, New York, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4404-5
PROCEEDINGS PAPER
Design and Development of Thermoplastic Polyurethane Based Composite Membranes
R. Vasanthakumari
R. Vasanthakumari
B. S. Abdur Rahman University, Chennai, India
Search for other works by this author on:
R. Vasanthakumari
B. S. Abdur Rahman University, Chennai, India
Paper No:
FuelCell2010-33050, pp. 21-26; 6 pages
Published Online:
December 3, 2010
Citation
Vasanthakumari, R. "Design and Development of Thermoplastic Polyurethane Based Composite Membranes." Proceedings of the ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1. Brooklyn, New York, USA. June 14–16, 2010. pp. 21-26. ASME. https://doi.org/10.1115/FuelCell2010-33050
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Effect of Bridging Groups on Sulfonated Poly(imide-Siloxane) for Application in Proton Exchange Membrane
J. Fuel Cell Sci. Technol (April,2010)
Influence of Sulfonationity of Epoxy-Based Semi-Interpenetrating Polymer Networks of Sulfonated Polyimides as Proton Exchange Membranes on the Performance of Fuel Cell Application
J. Fuel Cell Sci. Technol (April,2010)
Relaxation of Proton Conductivity and Stress in Proton Exchange Membranes Under Strain
J. Eng. Mater. Technol (October,2006)
Related Chapters
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Glossary of Terms
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration