A dynamic model of a 100 MW solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system has been developed and subjected to perturbations in diurnal ambient temperature and pressure as well as load sheds. The dynamic system responses monitored were the fuel cell electrolyte temperature, gas turbine shaft speed, turbine inlet temperature and compressor surge. Using a control strategy that primarily focuses on holding fuel cell electrolyte temperature constant and secondarily on maintaining gas turbine shaft speed, safe operation was found to occur for expected ambient pressure variation ranges and for ambient temperature variations up to 28 K, when tested non-simultaneously. When ambient temperature and pressure were varied simultaneously, stable operation was found to occur when the two are in phase but not when the two are out of phase. The latter case leads to shaft over-speed. Compressor surge was found to be more likely when the system is subjected to a load shed initiated at minimum ambient temperature rather than at maximum ambient temperature. Fuel cell electrolyte temperature was found to be well-controlled except in the case of shaft over-speeds. Turbine inlet temperature remained in safe bounds for all cases.
Skip Nav Destination
ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology
June 8–10, 2009
Newport Beach, California, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4881-4
PROCEEDINGS PAPER
Diurnal Temperature and Pressure Effects on Axial Turbo-Machinery Stability in Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems
James D. Maclay,
James D. Maclay
University of California, Irvine, Irvine, CA
Search for other works by this author on:
Jacob Brouwer,
Jacob Brouwer
University of California, Irvine, Irvine, CA
Search for other works by this author on:
G. Scott Samuelsen
G. Scott Samuelsen
University of California, Irvine, Irvine, CA
Search for other works by this author on:
James D. Maclay
University of California, Irvine, Irvine, CA
Jacob Brouwer
University of California, Irvine, Irvine, CA
G. Scott Samuelsen
University of California, Irvine, Irvine, CA
Paper No:
FuelCell2009-85057, pp. 551-558; 8 pages
Published Online:
February 17, 2010
Citation
Maclay, JD, Brouwer, J, & Samuelsen, GS. "Diurnal Temperature and Pressure Effects on Axial Turbo-Machinery Stability in Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems." Proceedings of the ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. Newport Beach, California, USA. June 8–10, 2009. pp. 551-558. ASME. https://doi.org/10.1115/FuelCell2009-85057
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Diurnal Temperature and Pressure Effects on Axial Turbomachinery Stability in Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems
J. Fuel Cell Sci. Technol (June,2011)
Fuel Composition Transients in Fuel Cell Turbine Hybrid for Polygeneration Applications
J. Fuel Cell Sci. Technol (December,2014)
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
J. Fuel Cell Sci. Technol (August,2006)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential