In a PEFC stack, end cells are subjected to severe conditions compared to the center cell, sometimes resulting in poor end cell performance and early freeze out. In this work, the concept of using controlled temperature gradients to non-parasitically remove excess water from end cell during PEFC stack shutdown has been numerically investigated. To investigate the end cell water transport, an integrated modeling approach focusing both at stack and single cell level is presented. The stack thermal model is developed to obtain detailed temperature distribution across the PEFC stack. Extending the results of the stack thermal model into a single cell level, a two-phase unit fuel cell model is developed to investigate the water and thermal transport in the PEFC components after shutdown, which for the first time includes thermo-osmotic flow in the membrane. The model accounts for capillary and phase-change induced flow in the porous media, and thermo-osmotic and diffusive flow in the polymer membrane. The single cell model is used to estimate the local water distribution with land/channel boundary condition, and the experimentally validated stack thermal model provided the transient temperature boundary condition to simulate the end cells. Model results indicate that a favorable temperature gradient can be formed in the stack to enhance the water drainage rate, thus enhancing the anode end cell cold start performance.
Skip Nav Destination
ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology
June 8–10, 2009
Newport Beach, California, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4881-4
PROCEEDINGS PAPER
Effect of Temperature Gradient on End Cell Water Transport in a Polymer Electrolyte Fuel Cell After Shutdown
Manish Khandelwal,
Manish Khandelwal
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Matthew M. Mench
Matthew M. Mench
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Manish Khandelwal
Pennsylvania State University, University Park, PA
Matthew M. Mench
Pennsylvania State University, University Park, PA
Paper No:
FuelCell2009-85103, pp. 339-346; 8 pages
Published Online:
February 17, 2010
Citation
Khandelwal, M, & Mench, MM. "Effect of Temperature Gradient on End Cell Water Transport in a Polymer Electrolyte Fuel Cell After Shutdown." Proceedings of the ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. Newport Beach, California, USA. June 8–10, 2009. pp. 339-346. ASME. https://doi.org/10.1115/FuelCell2009-85103
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Influence of Surface Structure on Performance of Inkjet Printed Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells
J. Electrochem. En. Conv. Stor (February,2022)
Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
J. Electrochem. En. Conv. Stor (August,2019)
Numerical Analysis on Influence of Double-Sided 3D-Patterned Cathode Catalyst Layers on Polymer Electrolyte Fuel Cell Performance
J. Electrochem. En. Conv. Stor (August,2025)
Related Chapters
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Influence of Formation Clays on the Flow of Aqueous Fluids
Water for Subsurface Injection
Transient Heat Transfer with Little or No Temperature Gradient within Special Solids
Case Studies in Transient Heat Transfer With Sensitivities to Governing Variables