A simple and mass productive extrusion technique was applied to fabricate anode-supported micro-tubular solid oxide fuel cells (SOFCs). A standard NiO/8YSZ (Nickel oxide/8 mol % yttria stabilized zirconia) cermets anode, 8 YSZ electrolyte, and LSM (Lanthanum strontium manganite) cathode were used as the materials components. SEM (secondary electron microscopy) images indicated vacuum infiltration method successfully generated the thin electrolyte layer (10∼15 μm) with a structurally effective three phase boundaries. Fabricated unit cell showed the open circuit voltage of 1.12 V without any fuel leaking problems. Electrochemical tests showed a maximum power density up to 0.30 W/cm2 at 800 °C, implying the excellent performance as micro-tubular SOFCs. This study verified that the extrusion aided by vacuum infiltration process could be a promising technique for mass production of microtubualr SOFCs.

This content is only available via PDF.
You do not currently have access to this content.