In terms of the system efficiency, it is very useful to apply the ejector into the fuel recirculation system of a fuel cell system since the ejector need no parasitic power to operate. Since the conventional automotive fuel cell use hydrogen and air as their fuel, the only hydrogen is needed to be recirculated for the better fuel efficiency. On the other hand, the submarine fuel cell needs both hydrogen and oxygen recirculation systems because the submarine drives under the sea. In particular, the cathodic recirculation has to meet the tougher target since the oxygen based pressurized stack generally used in the submarine applications generates the significant amount of the water in the stack during the operation. Namely, the oxygen utilization has designed less than 50% in the whole operating range for the better exhausting of the generated waters. The target of the oxygen utilization forces that the entrainment ratio of the ejector to be more than one in the whole range. However, the conventional ejector using a constant nozzle can not afford to satisfy the mentioned critical requirement. To overcome the problem, the double-ejector and its control strategy are designed. The performance of the proposed double-ejector is verified by the experiments based on the real operating conditions of the target submarine system. Furthermore, the proposed design method can be used for the other fuel recirculation system of a large-scale fuel cell system with the critical requirement of the fuel utilization.
Skip Nav Destination
ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
June 16–18, 2008
Denver, Colorado, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4318-1
PROCEEDINGS PAPER
Design of a Double-Ejector Oxygen Recirculated System for Large-Scale Submarine Fuel Cell Available to Purchase
Minjin Kim,
Minjin Kim
Korea Institute of Energy Research, Daejeon, South Korea
Search for other works by this author on:
Young-Jun Sohn,
Young-Jun Sohn
Korea Institute of Energy Research, Daejeon, South Korea
Search for other works by this author on:
Kyoungyoun Kim,
Kyoungyoun Kim
Korea Institute of Energy Research, Daejeon, South Korea
Search for other works by this author on:
Won-Yong Lee
Won-Yong Lee
Korea Institute of Energy Research, Daejeon, South Korea
Search for other works by this author on:
Minjin Kim
Korea Institute of Energy Research, Daejeon, South Korea
Young-Jun Sohn
Korea Institute of Energy Research, Daejeon, South Korea
Kyoungyoun Kim
Korea Institute of Energy Research, Daejeon, South Korea
Won-Yong Lee
Korea Institute of Energy Research, Daejeon, South Korea
Paper No:
FuelCell2008-65202, pp. 965-969; 5 pages
Published Online:
June 22, 2009
Citation
Kim, M, Sohn, Y, Kim, K, & Lee, W. "Design of a Double-Ejector Oxygen Recirculated System for Large-Scale Submarine Fuel Cell." Proceedings of the ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. Denver, Colorado, USA. June 16–18, 2008. pp. 965-969. ASME. https://doi.org/10.1115/FuelCell2008-65202
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Numerical Investigation Into the Effect of Structural Parameters of Parallel Flow Field With Cooling Channels on Fuel Cell Performance
J. Electrochem. En. Conv. Stor (February,2022)
Parametric Thermodynamic Analysis of a Solid Oxide Fuel Cell Gas Turbine System Design Space
J. Eng. Gas Turbines Power (July,2010)
Thermal and Air Management of an Open Cathode Proton Exchange Membrane Fuel Cell Using Sliding Mode Control
J. Electrochem. En. Conv. Stor (May,2024)
Related Chapters
Reassessment
Air Engines: The History, Science, and Reality of the Perfect Engine
Submarine Sediment Scouring in Sea-Crossing Bridge Locations (Xiamen Rail-Cum-Road Bridge on Fuzhou-Xiamen Railroad Taken as an Example)
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)
Introduction and Scope
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging