This paper deals with the use of microjets as a reactant delivery method for a PEM fuel cell. The flow physics of this technique have been adapted such that an even distribution of reactants over the membrane is achieved. A single cell based on this microjet delivery method has been built and tested using the fuel cell test station at SESEC. Polarization curves were obtained for a number of different operating conditions in which the relative humidity and supply pressure of the air supply were varied. Similar operating conditions were used to obtain polarization curves for a similarly sized commercially available fuel cell that utilizes commonly used serpentine flow channels for reactant delivery. Comparison of the polarization curves at similar operating conditions revealed that the microjet-based fuel cell was relatively unaffected by the changes in relative humidity and and positively affected by an increase in supply pressure, which was in stark contrast to what was observed for the commercial fuel cell.

This content is only available via PDF.
You do not currently have access to this content.