The topic of fuel cells remains novel in most of the engineering programs. While a good selection of textbooks has been introduced, the need for enlightening and achievable projects and homework problems remains strong. The application of MathCAD to a molten-carbonate fuel cell course project is presented. This work effectively brings together the authors’ efforts to offer students the cutting edge experiences in thermal sciences and fuel cell theory. It has been shown that the topic of fuel cells can naturally be introduced from the coverage of reacting systems and combustion in particular. Likewise, there has been a significant development of a uniform mathematical model of a variety of thermodynamic phenomena employing MathCAD, with a considerable increase in the difficulty level of problems that can be completed by the student. MathCAD functionality has been applied to problems in Thermodynamics, Energy Systems, Internal Combustion Engines, and now Fuel Cells. The principles of modeling the carbon-hydrogen-oxygen-nitrogen (CHON) systems have been extended to reflect the thermo- and electro-chemical processes in fuel cells, which includes the dynamically shifting Nernst potential as reactants flow through the fuel cells. Operational parameters, like fuel and oxidizer utilization, can also be evaluated. The intent of this paper is to demonstrate how MathCAD can be used to perform very powerful calculations for fuel cell applications while the intuitive solving structures and mathematical report-like worksheets created in MathCAD promote learning of fuel cell topics. The presented project model can be broken into progressive assignments or just individual homework problems in an undergraduate applied thermodynamics or fuel cell applications course.

This content is only available via PDF.
You do not currently have access to this content.