Solid oxide fuel cells are being developed for integrated gasification combined cycle hybrid power systems. It is therefore necessary to evaluate the coupled temperature and concentration profiles for SOFC anodes exposed to coal syngas. In this work the SOFC anode was treated as a porous composite of 50/50 (volume) Ni / YSZ. Porous transport was modeled using the dusty gas model (DGM) and included two pore reactions, namely water gas shift and steam reforming of methane. The thermal transport model considered heat exchange by radiation between the interconnect and SOFC surface, convective transfer from bulk gas flow over the anode, heat generation terms due to pore reactions, and heat generation terms at the electrolyte boundary due to electrochemical reactions, ohmic heating, and concentration polarization. Composition profiles throughout the porous anode were considered for the DGM alone and were compared to the DGM including energy (DGME). The cases examined were for current densities ranging from 0.000–0.750 A/cm2 and for pressures from 1–19 atm absolute. Simulation results predict that the average cell operating temperature will increase 10 to 60°C relative to the furnace wall with inclusion of the energy equations. However, the thermal gradients within the anode are small due to the good thermal conductivity of the Ni-based anode. The effect of inclusion of energy transport on the hydrogen concentration profile is mixed depending on the independent parameter considered, with relative insensitivity to changes in the current density, but modest sensitivity to changes in operating pressure. Consideration of the thermal transport is important for determination of the interaction of coal syngas trace species with the anode, but is less critical for material stability.

This content is only available via PDF.
You do not currently have access to this content.