Solid oxide fuel cells are being developed for integrated gasification combined cycle hybrid power systems. It is therefore necessary to evaluate the coupled temperature and concentration profiles for SOFC anodes exposed to coal syngas. In this work the SOFC anode was treated as a porous composite of 50/50 (volume) Ni / YSZ. Porous transport was modeled using the dusty gas model (DGM) and included two pore reactions, namely water gas shift and steam reforming of methane. The thermal transport model considered heat exchange by radiation between the interconnect and SOFC surface, convective transfer from bulk gas flow over the anode, heat generation terms due to pore reactions, and heat generation terms at the electrolyte boundary due to electrochemical reactions, ohmic heating, and concentration polarization. Composition profiles throughout the porous anode were considered for the DGM alone and were compared to the DGM including energy (DGME). The cases examined were for current densities ranging from 0.000–0.750 A/cm2 and for pressures from 1–19 atm absolute. Simulation results predict that the average cell operating temperature will increase 10 to 60°C relative to the furnace wall with inclusion of the energy equations. However, the thermal gradients within the anode are small due to the good thermal conductivity of the Ni-based anode. The effect of inclusion of energy transport on the hydrogen concentration profile is mixed depending on the independent parameter considered, with relative insensitivity to changes in the current density, but modest sensitivity to changes in operating pressure. Consideration of the thermal transport is important for determination of the interaction of coal syngas trace species with the anode, but is less critical for material stability.
Skip Nav Destination
ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
June 16–18, 2008
Denver, Colorado, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4318-1
PROCEEDINGS PAPER
Porous Anode Model for Coal Syngas Fuelled SOFC: Combined Mass and Energy Transport Normal to Cell Plane Available to Purchase
Kirk Gerdes,
Kirk Gerdes
National Energy Technology Laboratory, Morgantown, WV
Search for other works by this author on:
Randall Gemmen
Randall Gemmen
National Energy Technology Laboratory, Morgantown, WV
Search for other works by this author on:
Kirk Gerdes
National Energy Technology Laboratory, Morgantown, WV
Randall Gemmen
National Energy Technology Laboratory, Morgantown, WV
Paper No:
FuelCell2008-65055, pp. 165-175; 11 pages
Published Online:
June 22, 2009
Citation
Gerdes, K, & Gemmen, R. "Porous Anode Model for Coal Syngas Fuelled SOFC: Combined Mass and Energy Transport Normal to Cell Plane." Proceedings of the ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. Denver, Colorado, USA. June 16–18, 2008. pp. 165-175. ASME. https://doi.org/10.1115/FuelCell2008-65055
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Dynamic Behavior of a Solid Oxide Steam Electrolyzer System Using Transient Photovoltaic Generated Power for Renewable Hydrogen Production
J. Electrochem. En. Conv. Stor (November,2019)
A Finite Volume SOFC Model for Coal-Based Integrated Gasification Fuel Cell Systems Analysis
J. Fuel Cell Sci. Technol (August,2010)
Parallel Manifold Effects on the Heat and Mass Transfer Characteristics of Metal-Supported Solid Oxide Fuel Cell Stacks
J. Fuel Cell Sci. Technol (December,2011)
Related Chapters
Effects of Metallic Plate and Objects on Performance of Inverted F Antenna for ISM Band Application
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
Mathematical Background
Vibrations of Linear Piezostructures
Joint Polarization Information for Fast Multi-Target Localization in Bistatic MIMO Radar System
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)