To achieve optimal performance with minimal parasitic losses and degradation, the relationship between water removal parameters such as flow rate and the diffusion media (DM) surface properties must be clearly identified. An extensive experimental study of the influence of controllable engineering parameters, including surface PTFE (Teflon™) coverage (ranging from 5% to 20% of wt.) and operational air flow rate, on liquid droplet deformation at the interface of the DM and the gas flow channel was performed. A new visualization technique was developed to better understand the droplet mechanisms with enhanced optical access of both side and top views of the flow channel of a simulated H2 PEFC. A telecentric lens and 5 mm by 5 mm prisms embedded in the flow channel side walls were used for the first time to measure droplet receding and advancing surface angles in an enclosed flow channel. The influence of channel air flow rate and emerging droplet size on droplet characteristics with varying PTFE content in the DM was investigated to identify the conditions under which the droplet tends toward an unstable state. The results indicate that operational conditions, droplet height, chord length, and level of surface hydrophobicity of the DM directly affect the droplet instability. At high flow rates, the surface hydrophobicity of the DM enhances the efficacy of droplet removal, and helps to avoid local channel flooding, however at low flow rates, regardless of the amount of PTFE content, droplet instability (and removal) is unaffected by the DM surface PTFE content.
Skip Nav Destination
ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
June 19–21, 2006
Irvine, California, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4247-9
PROCEEDINGS PAPER
Factors Impacting Liquid Droplet Instability in a PEFC Flow Channel
Emin Caglan Kumbur,
Emin Caglan Kumbur
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Kendra Vail Sharp,
Kendra Vail Sharp
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Matthew Michael Mench
Matthew Michael Mench
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Emin Caglan Kumbur
Pennsylvania State University, University Park, PA
Kendra Vail Sharp
Pennsylvania State University, University Park, PA
Matthew Michael Mench
Pennsylvania State University, University Park, PA
Paper No:
FUELCELL2006-97041, pp. 97-104; 8 pages
Published Online:
September 15, 2008
Citation
Kumbur, EC, Sharp, KV, & Mench, MM. "Factors Impacting Liquid Droplet Instability in a PEFC Flow Channel." Proceedings of the ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B. Irvine, California, USA. June 19–21, 2006. pp. 97-104. ASME. https://doi.org/10.1115/FUELCELL2006-97041
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Water Transport in a PEMFC Based on the Difference in Capillary Pressure Between the Cathode Catalyst Layer and Microporous Layer
J. Fuel Cell Sci. Technol (October,2015)
Numerical Modeling of Proton Exchange Membrane Fuel Cell With Considering Thermal and Relative Humidity Effects on the Cell Performance
J. Fuel Cell Sci. Technol (August,2006)
Two-Phase Flow Maldistribution and Mitigation in Polymer Electrolyte Fuel Cells
J. Fuel Cell Sci. Technol (August,2009)
Related Chapters
Pipeline Integrity and Security
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
Environment
Engineering the Everyday and the Extraordinary: Milestones in Innovation
Seismic Protection for Pressure Piping Systems
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards