The National Institute of Standards and Technology (NIST), in conjunction with Virginia Tech, has developed a rating methodology for residential-scale stationary fuel cell systems. The methodology predicts the cumulative electrical production, thermal energy delivery, and fuel consumption on an annual basis. The annual performance is estimated by representing the entire year of climate and load data into representative winter, spring/fall, and summer days for six different U.S. climatic zones. It prescribes a minimal number of steady state and simulated use tests, which provide the necessary performance data for the calculation procedure that predicts the annual performance. The procedure accounts for the changes in performance resulting from changes in ambient temperature, electrical load, and, if the unit provides thermal as well as electrical power, thermal load. The rating methodology addresses four different types of fuel cell systems: grid-independent electrical load following, grid-connected constant power, grid-connected thermal load following, and grid-connected water heating. This paper will describe a partial validation of the rating methodology for a grid-connected thermal load following fuel cell system. The rating methodology was validated using measured data from tests that subjected the fuel cell system to domestic hot water and space heating thermal loads for each of the three representative days. The simplification of a full year’s load and climate data into three representative days was then validated by comparing the rating methodology predictions with the prediction of each hour over the full year in each of the six cities.

This content is only available via PDF.
You do not currently have access to this content.