Bioethanol, obtained by biomass fermentation, could be an important hydrogen supplier as a renewable source. The availability of active, selective and stable catalyst for bioethanol steam reforming is a key point for the development of processes suitable to this purpose. In this work, the performance of different supported catalysts in the steam reforming of bioethanol at molten carbonate fuel cell (MCFC) operative condition has been focused and a decreasing activity has been related to the formation of carbon. Furthermore catalytic behaviour of a Ni supported catalyst has been tested under reforming condition both distillation industry’s waste and ethanol-water mixture. Results revealed that, superior alcohols (fusel oil) arising from the distillation process influence carbon formation and the presence of oxygen (ATR condition) preserves the catalyst activity which otherwise significantly deactivate mainly due to the carbon formation.

This content is only available via PDF.
You do not currently have access to this content.