This paper discusses numerical analysis of heat and mass transfer characteristics in autothermal fuel reformer. Assuming local thermal equilibrium between bulk gas and surface of catalyst, one medium approach for energy equation is incorporated. Also, mass transfer between concentrations of bulk gas and near the surface of catalyst is neglected due to relatively low gas mixture velocity. For surface chemical reaction Langmuir-Hinshelwood reaction is incorporated when methane (CH4) is reformed to hydrogen-rich gases by autothermal reforming (ATR) reaction. Complete combustion, steam reforming, water gas shift and direct methane steam reforming reactions are included in the chemical reaction model. Under two operating conditions (O/C and S/C), ATR reactions are estimated from the numerical calculations. Mass, momentum, and energy equations are simultaneously calculated with chemical reactions. From the predicted results, we can estimate optimum operating conditions for high hydrogen yield.

This content is only available via PDF.
You do not currently have access to this content.