In conventional gas turbine systems combustion results in high exergy losses (∼30%) of fuel exergy input. Replacing the combustor with a high temperature fuel cell, like the Solid Oxide Fuel Cell (SOFC), will significantly reduce these exergy losses. As the SOFC electrochemically converts the natural gas, exergy losses are far lower (∼10%) compared to combustion. Natural gas entering a SOFC system has to be reformed first to hydrogen and carbon monoxide by steam reforming. Here it is chosen to use the heat generated by the fuel cell to drive the endothermic reforming reactions: internal reforming. The SOFC-GT system has the advantage that both fuel cell and gas turbine technology contribute to power production. In earlier work [1] several fuel cell system configurations with PEMFC, MCFC or SOFC, were analyzed studying the exergy flows. Here is focused on the SOFC-GT configuration, to get a detailed understanding of the exergy flows and losses through all individual components. Several configurations, combining the SOFC with the GT are possible. The selected operating conditions should prevent carbon deposition. Systems studies are performed to get more insight in the exergy losses in these combined systems. Exergy analysis facilitates the search for the high efficient SOFC-GT hybrid systems. Using exergy analysis, several useful configurations are found. Exergy losses are minimized by varying pressure ratio and turbine inlet temperature. Sensitivity studies, of equivalent cell resistance and fuel cell temperature, show that total system exergy efficiencies of more than 80% are conceivable, without using a bottoming cycle.

This content is only available via PDF.
You do not currently have access to this content.