During fuel cell operation the electrochemical activity often is not homogenous over the electrode area. This may be caused by an non-uniform water content in the membrane, an inhomogeneous temperature distribution, and reactant gradients in the cell. Consequently a variation of the current density over the cell area occurs which tends to result in inferior performance. For in situ measurements of the current density distribution in fuel cell stacks a segmented bipolar plate was developed. The segmented bipolar plate was first tested in single cells with stack endplates to verify the function of all components. The tests showed that the measurement tool works very reliable and accurate. The insight in an operating fuel cell stack via current density distribution measurement is very helpful to investigate interactions between cells. Results can be used to validate models and to optimise stack components, e.g. flow field and manifold design, as well as to detect the best stack operating conditions. By applying segmented bipolar plates as sensor plates for stack system controls an improved performance, safe operation and longer life cycles can be achieved. The developed segmented bipolar plates with integrated current sensors were used to assemble a short stack consisting of 3 cells; each of them having an active area of 25cm2 divided into 49 segments. The design of the bipolar plate proofed very suitable for easy assembling of single cells and stacks. First measurement results show that different current distributions can appear in the cells and these can vary from cell to cell, depending on the operating conditions of the stack. Electrical coupling between the cells was investigated and found to be only marginal for the assembly used.

This content is only available via PDF.
You do not currently have access to this content.