Corrosion resistant metal treated bipolar plates with higher rigidity and electrical conductivity than graphite were developed and tested for PEM fuel cell applications. Six replicas of single cells were fabricated; two of graphite composites bipolar plates and the other four plates were coated aluminum. Two different high corrosion resistant coatings were used in this study and were applied to each pair of the metallic plates. An E-TEK Series 14-W MEA with carbon cloth GDL, thickness of Nafion <50 microns, <1mg/cm^2 total platinum content (anode & cathode) and 6.45 cm2 active electrode areas, was fitted to each cell and operated under identical conditions. The obtained data from the two graphite cells were averaged and plotted and the other aluminum cells’ data were similarly treated and plotted on the same graph for comparison. Generally, the metallic treated bipolar plate provided at least a 22% savings in hydrogen consumption in comparison to graphite. This is attributed to the lower bulk and surface contact resistance of the coated aluminum plates used in this study in relation to graphite. The results of the lifetime testing conducted at temperature of 70° C under loading condition ranging from 0 to 0.6 W that showed no indication of power degradation due to metal corrosion for at least 60 hours.

This content is only available via PDF.
You do not currently have access to this content.