A 5 kW proton exchange membrane fuel cell (PEMFC) with a reformer has been installed and tested at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil, aiming the experimental determination of its performance and co-generation potential to increase the fuel chemical energy usage. The unit uses a fuel processor to convert energy from natural gas into hydrogen rich reformate. The fuel cell is totally instrumented, supplying data for calculating the overall system efficiency (total efficiency), reformer efficiency, stack efficiency, conversion efficiency (DC/AC), and co-generation potential, at previously set up output powers of 2,5 kW and 4 kW. The paper details the equations required for calculating the parameters, both theoretically, from thermodynamics and electrochemics points of view, and experimentally, from mass and energy balances, comparing the results. Steady state data were taken at 13 different days, resulting in reformer, stack, conversion and total average efficiencies, together with the calculated standard deviation. It was also found that the energy loss in the reformer and in the stack are approximately the same. The co-generation potential was estimated by calculating the heat rejected by the stack and the heat rejected in the reformer, giving a value of 67,5% and 68,9%, respectively for 2,5 kW and 4 kW. Therefore, co-generation can substantially reduce the fuel cell energy cost, and thus increasing the feasibility of its use.

This content is only available via PDF.
You do not currently have access to this content.