Fuel cells may in the future compete with heat engines in automobiles and motor generators and with batteries in portable electronics. Hydrogen, either in compressed, cryogenic, or chemically stored form is a good fuel if the storage density can be improved. Alternatively, the hydrogen could be obtained by converting gasoline, alcohols or other liquid hydrocarbons into a hydrogen-rich gas in a fuel processor that is a component of the fuel cell system. Such processors will have to be small, light, and inexpensive, and will have to have rapid ramp-up and ramp-down capabilities to follow the power demands of the applications. Traditional steam reforming technology does not meet these requirements, but newly developed catalytic auto-thermal reformers do. The principles of operation and the status of the technology are discussed.

This content is only available via PDF.
You do not currently have access to this content.