Axial piston machines are widely used in industry thus new cost-effective and highly efficient designs are needed. One way to increase efficiency and decrease cost is by altering the geometry along with the configuration of the piston/cylinder interface influencing the fluid film generation and in turn the energy dissipation and load carrying capacity while still having a design that is cost effective and easy to manufacture. This paper presents a study on a reduction of energy dissipation between the piston and cylinder over a wide range of operating conditions at both full and partial displacements based on the surface shape of the piston along with the minimum clearance. First, it is necessary to measure a base design and then compare those results to simulations in order to verify the simulation results. Once a baseline is established, various piston surface shapes and minimum clearances are then also simulated and compared back to the simulated baseline. Not only is energy dissipation important to compare, but also the minimum gap height over one revolution. The minimum gap height is in direct correlation to friction loss and wear. Therefore, this paper also includes an understanding of how the gap height affects the total losses thus leading to the importance of finding a relative clearance that satisfies a median between torque losses and leakage along with the importance of reducing the occurrence of critical gap heights to reduce the need for wear in in the machine.

This content is only available via PDF.
You do not currently have access to this content.