Abstract

To replace cutterhead worn tools conveniently or get rid of shield’s jamming effectively in complicated stratum, a new nonlinear cutterhead pose control system of large-diameter slurry shields is especially designed. High precision cutterhead pose control of large-diameter slurry shields is hardly achieved due to the uncertain load force and mass. A nonlinear controller constructed by adaptive robust control based on sliding mode is designed for this parallel mechanism, which includes a special adaptation law to compensate for the uncertainties. The stability of the whole closed loop system is verified based on Lyapunov theory. And the validity of the proposed strategy is proved by Simulink and AMESim co-simulation. The simulation results show that not only in control accuracy but also in parameter uncertainty, the designed nonlinear cutterhead pose control is effective.

This content is only available via PDF.
You do not currently have access to this content.