Abstract

Switched inertance hydraulic converters (SIHC) are new digital hydraulic devices which provide an alternative to conventional proportional or servo valve-controlled systems in hydraulic fluid power. SIHCs can adjust and control flow and pressure by means of using digital control signals that do not rely on throttling the flow and dissipation of power, and provide hydraulic systems with high-energy efficiency, good controllability, and insensitivity to contamination. A flow booster is one configuration of SIHCs which can deliver more flow than the supply flow. In this article, the loading effects of SIHCs are investigated by applying a time-varying load on the flow booster. A control system consisting of a PI controller and a switching frequency optimizer was designed to operate a flow booster at its optimal switching frequencies and switching ratios to maximize system efficiency when the load varies. Simulated results showed that the flow booster with the proposed controller has very good dynamic response and can be operated at an average efficiency of 70% with a time-varying load. Compared with only using a PI controller, the proposed controller can improve the overall efficiency by up to 20%. As time-varying loading conditions are commonly found in hydraulic applications, this work constitutes an important contribution to the design and development of high-efficiency SIHCs.

This content is only available via PDF.
You do not currently have access to this content.