The hunt for increased efficiency and reliability of fluid power components have entailed a great deal of research on loss and wear mechanisms by means of computational tribology simulation in the last decades. The vast amount of theoretical work within tribology necessitates validation of the simulation models. The aim to validate such models has in recent years increased interest in sophisticated tribological measurement technology. A next level, for tribology in fluid power, is the integration of modelling, analysis and measurement technology with control to achieve active tribology, namely fluid power tribotronics. In this paper the challenge of feedback for tribotronic control loops in fluid power are addressed. Fundamental questions are in this regard to what extend do we need information? Is it necessary to measure fluid film thickness absolutely or dynamically, or do we even need in-situ information on the tribological joints? These questions are analysed in this paper by use of a dynamic lubricated journal-bearing model. From this analysis a conclusion on the oil whirl limit is found, which reveal an interesting perspective and potential risk in the application of feedforward in tribotronic control of lubricated journal-bearings. Finally, a discussion is concluded with the submission of relevant open research directions for fluid power tribotronic control systems.

This content is only available via PDF.
You do not currently have access to this content.