Conventional wind turbines are equipped with multi-stage fixed-ratio gearboxes to transmit power from the low speed rotor to the high speed generator. Gearbox failure is a major issue causing high maintenance costs. With a superior power to weight ratio, a hydrostatic transmission (HST) is an ideal candidate for a wind turbine drivetrain. HST, a continuous variable transmission, has the advantage of delivering high power with a fast and accurate response. To evaluate the performance of the HST wind turbine, a power regenerative hydrostatic wind turbine test platform has been developed. A hydraulic power source is used to emulate the dynamics of the turbine rotor. The test platform is an effective tools to validate the control strategies of the HST wind turbine. This paper presents the high fidelity mathematical model of the test platform. The parameters of the dynamic equations are identified by the experiments. The steady state and transient operations results are compared with the experimental data. The detailed control architecture of the start-up and shut-down cycle is described for the test platform.

This content is only available via PDF.
You do not currently have access to this content.