In contrast to rotational hydraulic displacement units, such as pumps or motors, conventional hydraulic cylinder actuators do not allow a continuous variation of their displacement quantity: the piston area is regarded constant. In order to adapt to varying load and velocity requirements in a load cycle under torque restrictions of the driving motor, cylinder drives often implement pumps with variable displacement.

In this paper, cylinders with discretely variable effective piston area by means of variable circuitry of multi-chamber cylinders are discussed. Hydraulic symmetry or constant asymmetry of the hydraulic cylinder are traits of the cylinder that are required to fit the cylinder to pump structures for closed-circuit displacement control, as given in electro-hydrostatic compact drives (ECD). A methodology to generate all possible solutions of variable area cylinders under the constraint of ECD requirements is proposed.

A comprehensive description of the solution space is given, based on combinatorics and solution of equation systems. The methodology dealing with abstract cylinder areas is backed up by a general approach to describe the mechanical cylinder design space to combine multiple cylinder areas in one structural unit. Examples for design of three and four area cylinders are given and results are discussed. The paper concludes with the development of a demonstrator design to allow experimental validation in a subsequent step.

This content is only available via PDF.
You do not currently have access to this content.