Water as a working fluid in hydraulic systems: the benefits of this particular hydraulic fluid are both numerous and consequential, but its implementation remains nontrivial for certain key applications. One of these key applications is the axial piston machine of swashplate type, which counts among its selling points efficiency, the possibility of variable displacement, and the ability to function in high-pressure systems [1]. Water as a working fluid tends to mar that last point with its extremely low viscosity — and the high leakages and low load support that stand as effects of that fluid property in the context of tribological interfaces. However, water’s environmentally friendly, fire resistant nature is coupled with a high thermal conductivity and high heat capacity favorable for keeping hydraulic systems cool, as well as a high bulk modulus that cuts slack in the exact execution of machine motions [2]. That makes it worth implementing in hydraulic systems, even in the face of the aforementioned troubles. This paper investigates the effects of a surface shape that can be applied to the cylinder bores of axial piston machines with the goal of improving load support while keeping down leakage in the critical piston cylinder tribological interface of axial piston machines operating at high pressures with water as their hydraulic fluid.

This content is only available via PDF.
You do not currently have access to this content.