The design and analysis of feedback controllers for digital displacement machines requires a control oriented model. The displacement throughput of a full stroke operated machine is altered on a stroke-by-stroke basis at fixed rotation angles. In the case of a fixed speed operation, it may be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions. The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great performance, both with respect to tracking and disturbance rejection.

This content is only available via PDF.
You do not currently have access to this content.