A gerotor gear generation algorithm has been developed that evaluates key performance objective functions to be minimized or maximized, and then an optimization algorithm is applied to determine the best design. Because of their popularity, circular-toothed gerotors are the focus of this study, and future work can extend this procedure to other gear forms. Parametric equations defining the circular-toothed gear set have been derived and implemented. Two objective functions were used in this kinematic optimization: maximize the ratio of displacement to pump radius, which is a measure of compactness, and minimize the kinematic flow ripple, which can have a negative effect on system dynamics and could be a major source of noise. Designs were constrained to ensure drivability, so the need for additional synchronization gearing is eliminated. The NSGA-II genetic algorithm was then applied to the gear generation algorithm in modeFRONTIER, a commercial software that integrates multi-objective optimization with third-party engineering software. A clear Pareto front was identified, and a multi-criteria decision-making genetic algorithm was used to select three optimal designs with varying priorities of compactness vs low flow variation. In addition, three pumps used in industry were scaled and evaluated with the gear generation algorithm for comparison. The scaled industry pumps were all close to the Pareto curve, but the optimized designs offer a slight kinematic advantage, which demonstrates the usefulness of the proposed gerotor design method.

This content is only available via PDF.
You do not currently have access to this content.