This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture and the position is estimated by integrating the estimated velocity. The binary operation of digi-valves enables limiting and resetting the position estimate since the moving member is switched between the mechanical end-stops of the valve. This enables accurate tracking since drifting effects due to measurement noise and integration of errors in the velocity estimate may be circumvented. The proposed observer architecture is presented along with stability proofs and initial experimental results. To reveal the optimal observer performance, an optimization of the observer parameters is carried out. Subsequently, the found observer parameters are perturbed to assess the robustness of the observer to parameter estimation errors. The proposed observer demonstrates accurate tracking of the valve movement when using experimentally obtained data from a moving coil actuated digi-valve prototype and observer parameters estimates in the vicinity of the optimized parameter values.

This content is only available via PDF.
You do not currently have access to this content.