When designing an actuator for a spool type directional control valve, axial forces acting on the spool have to be estimated. The steady-state flow force is the dominant axial force, which usually acts in the closing direction of the valve. However, many factors such as the valve geometry and the oil properties influence the flow force characteristics. Investigations regarding their effects on steady-state flow forces are described within this paper.

Different spool geometries of a test 2/2-way spool valve are used for steady-state flow force measurements at different oil temperatures. The measurement data are used for validation of CFD simulations, which are carried out to scrutinise the flow inside the valve. Besides the steady-state flow forces, the fluid flow angles at the inlet and the outlet of the spool chamber are analysed.

The results show that the spool geometry has a significant influence both on the flow rate and the steady-state flow force characteristics. Especially, the shape of the control edge has an impact on the flow patterns and on the magnitudes of steady-state flow forces. Moreover, the inlet and outlet fluid flow angles do not correlate with the expected values, which are commonly used for an analytical estimation of the flow forces. Furthermore, the oil temperature leads to quantitative deviations of the steady-state flow forces.

This content is only available via PDF.
You do not currently have access to this content.