In this paper, a robust, fixed-gain, and linear controller is designed for the output pressure of an electro-hydraulic actuator with parametric uncertainties. Quantitative feedback theory (QFT) is selected as the design technique. The objective is to satisfy specified performance criteria in terms of tracking, stability, and disturbance rejection. To design the QFT controller, the required family of frequency responses is obtained by linearizing the hydraulic nonlinear function around operating points of interest, and constructing an equivalent linear plant set. As a result, the stability of the closed-loop system is guaranteed only around the limited number of operating points, and specified values for system parameters. To overcome this limitation, Takagi-Sugeno (T-S) fuzzy modeling is employed. This way the nonlinear stability of the closed-loop system is investigated and ensured for a continuous range of parametric uncertainties and region of operating points. Having successful results from stability analysis, the QFT controller is applied on the experimental set-up. The experimental results are in accordance with the specified criteria.

This content is only available via PDF.
You do not currently have access to this content.