Syntactic foam, specifically a host urethane embedded with hollow microspheres, has been shown to be an effective method to treat pressure pulsations, also known as noise, within a hydraulic system; however, the current generation of foam becomes less effective with increasing system pressure, particularly ineffective above 7 MPa. Material modeling predicts that increasing the initial internal pressure of a microsphere will allow voids within the foam to retain their size at pressures up to 35 MPa and the foam will remain compliant at those pressures. Noise is attenuated by an expansion chamber lined with syntactic foam when the system pressure causes embedded microspheres to collapse, which leaves a gaseous void within the host urethane, greatly reducing the effective bulk modulus of the foam. Predicted material properties are then used in conjunction with a previously developed linear acoustic model to predict the effectiveness of developmental syntactic foams. Changing the mechanical properties of the current host urethane does not have a drastic impact on the overall performance unless the properties have been reduced to the approximate order as the properties of the void. The factors with the most consequence on noise control effectiveness are the internal pressure of the microspheres and system pressure.
Skip Nav Destination
ASME/BATH 2015 Symposium on Fluid Power and Motion Control
October 12–14, 2015
Chicago, Illinois, USA
Conference Sponsors:
- Fluid Power Systems and Technology Division
ISBN:
978-0-7918-5723-6
PROCEEDINGS PAPER
Material Modeling of High-Pressure Compliant Syntactic Foams
Elliott Gruber,
Elliott Gruber
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Kenneth Cunefare
Kenneth Cunefare
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Elliott Gruber
Georgia Institute of Technology, Atlanta, GA
Kenneth Cunefare
Georgia Institute of Technology, Atlanta, GA
Paper No:
FPMC2015-9531, V001T01A021; 7 pages
Published Online:
January 11, 2016
Citation
Gruber, E, & Cunefare, K. "Material Modeling of High-Pressure Compliant Syntactic Foams." Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control. ASME/BATH 2015 Symposium on Fluid Power and Motion Control. Chicago, Illinois, USA. October 12–14, 2015. V001T01A021. ASME. https://doi.org/10.1115/FPMC2015-9531
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Analytical Solution of Biot's Equations Based on Potential Functions Method
J. Vib. Acoust (October,2015)
Exhaust Vent Silencer Design
J. Eng. Ind (November,1972)
Modeling and Dynamic Analysis of an Electrical Helmholtz Resonator for Active Control of Resonant Noise
J. Vib. Acoust (October,2017)
Related Chapters
Toward More Effective Evaluation and Control of Airport Noise
Community Noise
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)