For a tandem airfoil configuration, an airfoil is placed in the wake of an upstream airfoil. This interaction affects the aerodynamic forces of the airfoils, especially the downstream one. In the present study a tandem configuration consists of an upstream pitching airfoil and a downstream stationary airfoil is investigated. This study aims to investigate the role of reduced frequency and pitch amplitude of the upstream airfoil’s motion on lift and drag coefficients of two airfoils. These two parameters play an important role in the formation of vortices. The investigation is done for Selig-Donovan 7003 (SD7003) airfoils at low Reynolds number of 30,000 using a computational fluid dynamics. Incompressible URANS equations were employed for solving the flow field. It was found that for a fixed reduced frequency of 0.5 thrust is produced on the hindfoil for a part of cycle for different pitch amplitudes from light to deep stall while for a fixed pitch amplitude at different reduced frequencies high level of thrust or drag can be produced. The reason is related to the type and intensity of vortex-blade interaction.

This content is only available via PDF.
You do not currently have access to this content.