Abstract

Atmospheric turbulence studies indicate the presence of self-similar scaling structures over a range of scales from the inertial outer scale to the dissipative inner scale. A measure of this self-similar structure has been obtained by computing the fractal dimension of images visualizing the turbulence using the widely used box-counting method. If applied blindly, the box-counting method can lead to misleading results in which the edges of the scaling range, corresponding to the upper and lower length scales referred to above are incorporated in an incorrect way. Furthermore, certain structures arising in turbulent flows that are not self-similar can deliver spurious contributions to the box-counting dimension. An appropriately trained Convolutional Neural Network can take account of both the above features in an appropriate way, using as inputs more detailed information than just the number of boxes covering the putative fractal set. To give a particular example, how the shape of clusters of covering boxes covering the object changes with box size could be analyzed. We will create a data set of decaying isotropic turbulence scenarios for atmospheric turbulence using Large-Eddy Simulations (LES) and analyze characteristic structures arising from these. These could include contours of velocity magnitude, as well as of levels of a passive scalar introduced into the simulated flows. We will then identify features of the structures that can be used to train the networks to obtain the most appropriate fractal dimension describing the scaling range, even when this range is of limited extent, down to a minimum of one order of magnitude.

This content is only available via PDF.
You do not currently have access to this content.