In this paper analytical formulas of water hammer known from the literature are simplified to the shortest possible mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Novel formulas are determined, for example for the flow velocity and wall shear stress in the Muto and Takahashi solution. A complete solution in the Laplace domain is presented and the problem of its inverse transformation is discussed. A series of comparative studies of analytical solutions with numerical solutions and the results of experimental research were carried out. The compared analytical solutions, taking into account the frequency-dependent nature of the hydraulic resistances, show very good agreement with the experimental results in a wide range of water hammer numbers, in particular when Wh ≤ 0.1. On the other hand, it turned out that the analytical model based on the quasi-steady friction in great detail simulates dynamic pressure response in systems characterized by a high value of the water hammer number Wh ≥ 0.5.

This content is only available via PDF.
You do not currently have access to this content.