Under hypersonic flight conditions, a vehicle travelling through the atmosphere could excite the air that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a shock wave for stagnation region. These reactions greatly change the properties of air and cause considerable deviation from those of a thermally and calorically perfect gas. A vehicle flying through the higher altitude of the atmosphere at high velocities may also experience thermal non-equilibrium since the lower density reduces the collision frequency and the high velocity results in smaller transit times for the air molecules. Under such extremely thermal circumstances, the heat transfer by convection and radiation around a vehicle has been one of key issues for thermal protection system (TPS). In this paper, the computational aerothermodynamics with fully coupled radiative heat transfer is developed. To validate the proposed approach, it is employed to simulate the thermal and chemical nonequilibrium flows over Stardust. The computed results on the reentry space vehicle reveal both of convective flux and radiative flux are in good agreements with other predicted results.

This content is only available via PDF.
You do not currently have access to this content.