Abstract
The Discrete Element Roughness Method (DERM) has been used to improve convective heat transfer predictions on surface roughness. This work aims to validate the core momentum-correlation of DERM through evaluating Computational fluid dynamics (CFD)-based solution of the flow around individual roughness elements with the goal of improving the correlations. More specifically, the matrix of scenarios evaluated using includes three different roughness elements at three different pressure drops (or flow rates). Results from these studies are to be used to validate and improve correlations used to approximate roughness in DERM. For further comparison, a fourth roughness element analyzed in previous work will also be compared. For each element, a steady and unsteady case are conducted and analyzed. The momentum loss results obtained from the CFD are then compared to the DERM-based predictions from the same roughness elements in search of any discrepancies. It is observed the momentum-correlation deviates from the CFD prediction with increasing element height.