The application of radially lobed nozzles has seen renewed challenges in the recent past with their roles in combustion chambers and passive flow control. The free jet flow from such nozzles has been studied for different flow conditions and compared to jets from round nozzles, verifying their improved mixing abilities. The precise mixing mechanisms of these nozzles are, however, not entirely understood and yet to be analyzed for typical jet parameters and excitation modes. While past studies have proposed the presence of spanwise Kelvin-Helmholtz instability modes, the roll-up frequencies of the structures indicate more than one primary structure, which is challenging to resolve experimentally.

The present study carries out three dimensional CFD simulations of the flow from a tubular lobed nozzle to identify instability mechanisms and vortex dynamics that lead to enhanced mixing. We initially validate the model against existing hotwire and LDV data following which a range of Large Eddy Simulations (LES) are carried out. The free jet flow was at a Reynolds number of around 5 × 104, based on the effective jet diameter. Initial results are compared to that of a round nozzle to demonstrate changes in mixing mechanisms. The lobed nozzle simulations confirmed the presence of K-H-like modes and their evolution. We also track the formation and the transport of coherent structures from the tubular part of the nozzle to the core flow, to reveal the evolution of the large-scale streamwise modes at the crests and corresponding horseshoe-like structures at the troughs.

This content is only available via PDF.
You do not currently have access to this content.