Abstract

The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer. The classical view is that the polymers modify the intercept constant within the log-region without impacting the von Kármán coefficient, which results in the log-region being unaltered though shifted outward from the wall. However, it has been recently shown that this is not accurate, especially at high drag reduction (> 40%). Past work examining the von Kármán coefficient and intercept constant has shown that polymer properties must impact the deviations, but without any quantification of the dependence. This work reviews the literature to make estimates of the local polymer properties and then demonstrates that the scatter at HDR can be attributed to variations in the Weissenberg number. In addition, new polymer ocean results are incorporated and shown to be quite consistent with polymer injection results using the maximum polymer concentration to define the polymer properties.

This content is only available via PDF.
You do not currently have access to this content.