Abstract

In this paper, we use a CFD analysis of a simplified, 2D geometry to study the ability of mako shark denticles to mitigate flow separation. We represent the viscous sublayer below a turbulent boundary layer streak as a Couette flow. Incipient separation is simulated by balancing upper wall velocity and adverse pressure gradient to achieve zero net mass flow, and we add various denticle geometries to study their effects. Each modeled denticle protrudes at an angle from 15° to 85° and sublayer blockage ratio from 0.05 to 0.85. Through variation of fluid properties and boundary conditions, we show that the anti-flow-reversal abilities of a single, bristled shark denticle are independent of Reynolds number, and we investigate the effect of the denticle at cases other than zero net mass flux. Based on these results, we create a new relationship to predict separation inhibition. These conclusions are highly generalizable and represent previously undiscovered universal behavior.

This content is only available via PDF.
You do not currently have access to this content.