Gas Carry-Under (GCU) is one of the undesirable phenomena that exists in the GLCC©1 even within the Operational Envelope (OPEN) for liquid carry-over. Few studies that are available on GLCC© GCU have been carried out when the GLCC© is operated in a metering loop configuration characterized by recombined outlets. In such configurations the gas and the liquid outlets of the GLCC are recombined downstream which acts as passive level control. However, studies have shown that the GLCC© OPEN increases significantly when active control strategies are employed. There has not been a systematic study aimed at analyzing the effect of control on the GCU in the GLCC. This study compares the previously published GLCC GCU swirling flow mechanism under recombination outlet configuration with data taken under the separated outlet configuration (control configuration). Experimental investigations for GCU are conducted in a state-of-the-art test facility for air-water and air-oil flow incorporating pressure and level control configurations. The experiments are carried out using a 3″ diameter GLCC© equipped with 3 sequential trap sections to measure simultaneously the Gas Volume Fraction (GVF) and gas evolution in the lower part of the GLCC. Also, gas trap sections are installed in the liquid leg of the GLCC© to measure simultaneously the overall GCU. The liquid level was controlled at 6″ below the GLCC© inlet for all experiments using various control strategies. Tangential wall jet impingement is the cause for entrainment of gas, thereby leading to GCU. 3 different flow mechanisms have been identified in the lower part of the GLCC and have significant effect on the GCU. Viscosity and surface tension are observed to affect the GCU. The extensive acquired data shed light on the complex flow behavior in the lower part of the GLCC© and its effect on the GCU of the GLCC©.

This content is only available via PDF.
You do not currently have access to this content.