Externally pressurized air journal bearings (air journal EPB’s) are lubrication-free, non-contact bearings that utilize air as the lubrication film. Unlike non-pressurized journal bearings that rely on rotation for hydrodynamic forces, the bearings generate a significant load bearing, restorative, hydrodynamic force independent of rotation. Empirical tests were performed measuring this restorative force and the mass flow out of the bearing-gap as a function of the eccentric displacement of the shaft from the bushing. Two different external pressurization configurations were examined. In one, the bearing-gap was pressurized via two rows of six feedholes located near the ends of the bearings (FH bearings). In the second, the bearing-gap was pressurized via porous liners (PL bearings). The so-called pressure compensation of the bearings was varied by altering the feedhole diameters for the FH bearings and changing the permeability of the PL bearings. The bearing clearance was varied by using shafts of varying OD’s. CFD calculations were then performed to simulate the empirical testing and were found to be in good agreement. The CFD analysis was then expanded over a wide design space for both the FH and PL bearings. The expectation was that the restorative force would continuously increase as the shaft was eccentrically displaced from the bushing reaching its maximum when the shaft was “grounded” so that the shaft contacted the bushing. However, the expanded CFD analysis showed a surprise result as it indicated that there were regions in the design space of the FH bearings where the maximum restorative force occurred at an eccentric displacement that placed the shaft near the bushing but did not ground it. Further eccentric displacement caused a decline rather than the expected increase in the restorative hydrodynamic force indicating a region of negative bearing stiffness. A reference was found that observed bearing load fall off (negative stiffness) with heavily loaded bearings (operating at high eccentricities) similar to our CFD findings. This area of operation was termed the “static instability region”. This paper presents further CFD analysis of the pressure wave in the bearing-gap at varying eccentricities. These waves are graphically dissected to show the characteristics that cause negative stiffness. The results indicate that PL bearings have no static instability and that the area of instability for FH bearings can be predicted.
Skip Nav Destination
ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
July 15–20, 2018
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5157-9
PROCEEDINGS PAPER
Investigation of the Causes of Static Instability in Externally Pressurized Gas Journal Bearings
Tom M. Lawrence,
Tom M. Lawrence
Indiana University-Purdue University Columbus, Columbus, IN
Search for other works by this author on:
Marvin D. Kemple
Marvin D. Kemple
Indiana University-Purdue University Indianapolis, Indianapolis, IN
Search for other works by this author on:
Tom M. Lawrence
Indiana University-Purdue University Columbus, Columbus, IN
Marvin D. Kemple
Indiana University-Purdue University Indianapolis, Indianapolis, IN
Paper No:
FEDSM2018-83403, V003T12A023; 9 pages
Published Online:
October 24, 2018
Citation
Lawrence, TM, & Kemple, MD. "Investigation of the Causes of Static Instability in Externally Pressurized Gas Journal Bearings." Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics. Montreal, Quebec, Canada. July 15–20, 2018. V003T12A023. ASME. https://doi.org/10.1115/FEDSM2018-83403
Download citation file:
16
Views
0
Citations
Related Proceedings Papers
Related Articles
Analytical and Experimental Study of Externally Pressurized Air Lubricated Journal Bearings
J. Basic Eng (March,1962)
Lubricated Hybrid Journal Bearings
J. Tribol (July,2011)
Dynamic Response and Stability of Pressurized Gas Squeeze-Film Dampers
J. Vib. Acoust (January,1998)
Related Chapters
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Performance Analysis of Rear Rubber Bushing Stiffness of Lower Control Arm on McPherson Suspension
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Average Shaft Centerline Plots
Fundamentals of Rotating Machinery Diagnostics