Many researchers have utilized submerged jet impingement geometry to study solid particle erosion/corrosion. However, only a few studies have investigated changing impingement angle and fluid viscosity. In this study, Particle Image Velocimetry (PIV) experiments were conducted using 14 micron glass spheres for direct impingement geometry at viscosities of 1, 14, and 55 cP. These viscosities correspond to Reynolds numbers of approximately 57000, 4000, and 1000, respectively. It was observed that by increasing the viscosity the flow exiting the nozzle transitioned from extremely turbulent to laminar flow. The data indicated fully turbulent flow at the outlet for viscosities of 1 and 14 cP. In the case of 55 cP flow, the flow exiting the nozzle became laminar contributing to a higher maximum velocity in 55 cP flow. Experiments at these viscosities were also conducted at impingement angles of 90, 75, and 45 degrees to investigate the effects of the impinging jet angle on a flat plate. Additionally, a series of Computational Fluid Dynamics (CFD) simulations of the flowfield were performed to compare with the experimental data collected in this paper.

This content is only available via PDF.
You do not currently have access to this content.