Sand particle erosion is the main cause of the failure of bends in the natural gas pipelines. The rapid progress of computational power and modern numerical methods has provided the opportunity for developing realistic simulation of the erosion process. The goal of this paper is to predict the sand erosion rates with the use of computational fluid dynamics in the gas/solid flows in the plugged tees and standard elbows. For this purpose, the Eulerian-Lagrangian approach was used. To simulate the flow, the SIMPLE algorithm and the k-ω SST turbulence model were used. Particles were injected into the inlet pipe with different sizes. To predict more realistic results the Grant and Tabakoff stochastic rebound model was applied and the Oka model was used to calculate erosion. The results showed that, the use of plugged tee instead of a standard elbow would reduce the erosion rate only for fine particles. Also, for them, by increasing the plugged length the pipe will experience less erosion. For coarser particles, however, the vortex created in the plugged section did not affect the particles velocity; therefore, the erosion rate was not reduced.

This content is only available via PDF.
You do not currently have access to this content.