Water droplet impact on horizontal glass, aluminum, and superhydrophobic surfaces is experimentally investigated using high speed imaging. Experiments are performed at three different relative humidities (i.e. 10, 20 and 30%) and three surface temperatures (i.e. 20, 2 and −2°C) to ascertain their effects on droplet spreading and recoil behaviors. In this study, the droplet Weber number, Reynolds number, and the ambient air temperature are fixed at 16.2, 1687, and 23°C, respectively. The high-speed images of impact, spreading and recoil of the droplets as well as the temporal variations of droplet spreads are prepared. Results show that the ratio of surface temperature to dew point temperature (which depends on the air temperature and relative humidity) has a significant influence on droplet spreading, recoil, and contact angle. When this ratio is less than one, condensation and frost formation become important. Decreasing the mentioned ratio (it can be done by decreasing the surface temperature or increasing the relative humidity) causes the droplet spreading factor for hydrophilic surfaces to increase significantly. For superhydrophobic surface, decreasing this ratio (within the mentioned range) does not influence the maximum spreading. However, the recoiling phase is slowed down and the droplet detachment time form the superhydrophobic surface is increased noticeably. In addition, the equilibrium contact angle decreases as the mentioned ratio decreases.

This content is only available via PDF.
You do not currently have access to this content.