Gas-Liquid Cylindrical Cyclone (GLCC©) Separators have been in use in petroleum and other related industries for over two decades. Prediction of Liquid Carry-Over Operational Envelope (LCO-OE) is essential for designing and proper operation of GLCC©. Earlier mechanistic models for predicting LCO-OE were based on gas-liquid phase flow. A new mechanistic model has been developed for the prediction of the LCO-OE incorporating the effect of watercut and fluid properties for a GLCC© under liquid level and pressure control configuration. The new model captures the effect of viscosity and surface tension on the LCO-OE and the effect of water cut on the onset of annular mist velocity. Comparison between the developed mechanistic model predictions for LCO-OE with the experimental data show a good agreement.

This content is only available via PDF.
You do not currently have access to this content.