In this paper, aerodynamic characteristics of two flapping wings in clap-and-fling motion at Re of ∼104, which corresponds to the flight regime of flapping-wing micro air vehicles, was investigated. The test employing dynamically scaled-up robotic arms installed on a water tank revealed that the wingbeat motion at such high Re in1duced the fully developed wake within two wingbeat cycles. This wake widely influenced the lift production covering the entire wingbeat period; the wings earned the additional lift during the entire downstroke, and lost the lift during the upstroke. Chordwise cross-sectional DPIV showed the massive downwash with enlarged tip vortices, when the wake was fully developed. The wake blew down the headwind and reduced the effective angles of attack. In the case of the clap-and-fling motion, the wake was leaned toward the dorsal part, in which the wings created the clap-and-fling motion, causing the global fluctuation of the aerodynamic force production.

This content is only available via PDF.
You do not currently have access to this content.