In this study, we have applied and compared two active flow control (AFC) mechanisms on a pitching NACA0012 airfoil at Reynolds number of 1 × 106 using 2-D computational fluid dynamics (CFD). These mechanisms are continuous blowing and suction which are applied separately on the airfoil which pitches around its quarter-chord in a sinusoidal motion. The location for suction and blowing was determined in our previous study based on the formation of a counter clock-wise vortex near the leading-edge. In our current study, we have compared the effectiveness of pure blowing and pure suction in suppressing the dynamic stall vortex (DSV) which is the main contributor to the drag increase, particularly near the maximum angle of attack (AOA) and in early downstroke motion. The blowing/suction slot is considered as a dent on the airfoil surface which enables the AFC to perform in a tangential manner. This configuration would allow blowing jet to penetrate further downstream and was shown to be more effective compared to a cross-flow orientation. We have compared the two aforementioned mechanisms in terms of hysteresis loops of lift and drag coefficients and have demonstrated the dynamics of flow in controlled and uncontrolled situations.
- Fluids Engineering Division
Comparison of Two Active Flow Control Mechanisms of Pure Blowing and Pure Suction on a Pitching NACA0012 Airfoil at Reynolds Number of 1 × 106
Asgari, E, & Tadjfar, M. "Comparison of Two Active Flow Control Mechanisms of Pure Blowing and Pure Suction on a Pitching NACA0012 Airfoil at Reynolds Number of 1 × 106." Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fluid Dynamics of Wind Energy; Bubble, Droplet, and Aerosol Dynamics. Montreal, Quebec, Canada. July 15–20, 2018. V001T01A006. ASME. https://doi.org/10.1115/FEDSM2018-83463
Download citation file: