The impact of inflow conditions on the flow structure and evolution characteristics of annular flows of Newtonian and shear-thinning fluids through a sudden pipe expansion are studied. Numerical solutions to the elliptic form of the governing equations along with the power-law constitutive equation were obtained using a finite-difference scheme. A parametric study is performed to reveal the influence of inflow velocity profiles, annular diameter ratio, k, and power-law index, n, over the following range of parameters: inflow velocity profile = {fully-developed, uniform}, k = {0, 0.5, 0.7} and n = {1, 0.8, 0.6}. Flow separation and entrainment, downstream of the expansion plane, creates central and a much larger outer recirculation regions. The results demonstrate the influence of inflow conditions, annular diameter ratio, and rheology on the extent and intensity of both flow recirculation regions, the wall shear stress distribution, and the evolution and redevelopment characteristics of the flow downstream the expansion plane. Fully-developed inflows result in larger reattachment and redevelopment lengths as well as more intense recirculation, within the central and corner regions, in comparison with uniform inflow conditions.

This content is only available via PDF.
You do not currently have access to this content.