Vortex induced vibration of a circular cylinder with low mass ratio in vicinity of a wall boundary is investigated experimentally in a water tunnel facility. Simultaneous measurements of the flow field via planar Particle Image Velocimetry and amplitude response have been carried out across a wide range of reduced velocities and cylinder-wall gap ratios (S* = S/D). For S* ≥ 3, both the amplitude response and the wake development are not significantly affected by the presence of the wall boundary. As S* is decreased below 3, the amplitude response decreases until S* ≈ 0.5, where the cylinder begins to periodically impact the wall. For all S* ≤ 0.5, the cylinder continues to impact the wall in a periodic fashion, and the reduced velocity range over which this occurs increases. Mean field and RMS field statistics revealed strong asymmetric wake development for S* < 3. Proper Orthogonal Decomposition of the velocity data was used to investigate the energy distribution in the coherent wake structures, and to filter the incoherent fluctuations via construction of a Reduced Order Model. Reconstructions of instantaneous vorticity fields obtained from the ROM illustrate the changes in vortex shedding patterns with the cylinder response.
- Fluids Engineering Division
Vortex-Induced Vibration of a Circular Cylinder With Low Mass Ratio Near a Plane Wall
Daneshvar, S, & Morton, C. "Vortex-Induced Vibration of a Circular Cylinder With Low Mass Ratio Near a Plane Wall." Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting. Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. Waikoloa, Hawaii, USA. July 30–August 3, 2017. V01CT23A002. ASME. https://doi.org/10.1115/FEDSM2017-69127
Download citation file: