This paper experimentally investigates the effectiveness of a closed-loop flow control method using a DBD plasma actuator for a NACA0015 airfoil, in which the surface pressure fluctuation is fed back to the system; the actuator was driven when the pressure fluctuation exceeds the setup threshold. The Reynolds number based on the chord length is set to 63,000 and the angle of attack is in the range from 12 to 15 degrees. The actuator was installed on the surface at 5% of the chord length from the leading edge. The results show that the closed-loop control worked better than the continuous operation. In the angle of attack of 12 and 14 degrees, the complete attached flow was attained by setting the appropriate threshold value of the pressure fluctuation. On the other hand, in 15 degrees, although the complete attached flow was not attained, the flow separation was partially suppressed.

This content is only available via PDF.
You do not currently have access to this content.