This paper presents an empirical approach for flapping-wing aerodynamics using a servo-driven towing tank and a dynamically scale-up robotic manipulator. Time-varying aerodynamic force and moment were measured, and digital particle image velocimetry in multiple cross-sections were conducted. Three case studies showed that the towing tank experiment could be an effective way to investigate the aerodynamic characteristics in detail, which are difficult to be predicted by other conventional approaches. The force and moment measurements clarified that an advance ratio has significant role in governing the LEV behavior and consequent aerodynamic performance of flapping wings. Results for moving sideways showed the effects of the wing-wing and wing-body interaction, and the usefulness of the towing tank experiments for analyzing the flight dynamic characteristics. It was also shown that the towing tank experiments can be applicable to realistic wing motions; test results using the wing kinematics of a living insect in forward flight were well compatible with the trim condition of the insect.

This content is only available via PDF.
You do not currently have access to this content.